CS351 HW2 Solutions - October 30, 2010

Solutions are mostly due to

Emre Nevayeshirazi

1-
/ 9(\ 90 goes to output file. /49\
68 80 130 comes as new input, since 68 80
it is greater than output 90 it
39 65 49 goes to new heap. 39 65
130 49 is the new root, since 90 has 130
gone to output file.
49 We need to reorganize old 80
/ \ heap to keep priority queue / \
68 80 structure. 68 49
39 65 Swap 80 and 49. 39 65
130 130
/80\ 80 goes to output file. /35\
68 49 35 comes as new input, since it 68 49
is less than output 80, it goes to
39 65 old heap. 39 65
130 35 is the new root for old heap, 130
since 80 has gone to output
file.
35 We need to reorganize old 68
/ \ heap to keep priority queue / \
68 49 structure. /65 49
39 65 Swap 68 and 35 first. 39 35
Swap 65 and 35 then.
130 130
/68\ 68 goes to output file. /25\
65 49 25 comes as new input, since it 65 49
is less than output 68, it goes to
39 35 old heap. 39 35
130 25 is the new root for old heap, 130

since 68 has gone to output
file.

CS351 HW2 Solutions - October 30, 2010

Solutions are mostly due to

Emre Nevayeshirazi

25 We need to reorganize old 65
/ \ heap to keep priority queue / \
/65 49 structure. 39 49
39 35 Swap 65 and 25 first. 25 35
Swap 39 and 25 then.
130 130
/65\ 65 goes to output file. /35\
39 49 110 comes as new input, since 39 49
it is greater than output 65, it /
25 35 goes to new heap. 25
130 35 is the new root for old heap, 130
since 65 has gone to output /
file. 110
35 We need to reorganize old 49
/ \ heap to keep priority queue / \
/39 49 structure. 39 35
25 Swap 35 and 49. 25
/130 /130
110 110
/49\ 49 goes to output file. / 14\
39 35 14 comes as new input, since it 39 35
/ is less than output 49, it goes to
25 old heap. 25
130 14 is the new root for old heap, 130
/ since 49 has gone to output /
110 file. 110
1 We need to reorganize old 3
/ heap to keep priority queue /
/39 35 structure. /25 35
25 Swap 39 and 14 first. 14
Swap 14 and 25 then.
/130 /130
110 110

CS351 HW2 Solutions - October 30, 2010

Solutions are mostly due to

Emre Nevayeshirazi

/A
25 35
14
130

/

110

39 goes to output file.

105 comes as new input, since
it is greater than output 39, it
goes to new heap.

14 is the new root for old heap,
since 39 has gone to output
file.

25/ 1K35

/N

110 105

25/ 1K35
/A

We need to reorganize old
heap to keep priority queue
structure.

Swap 14 and 35.

25/ 35\1

4

/A

110 105 110 105
/ 35\ 35 goes to output file. / 14
25 14 No input. 25
Therefore,14 is the new root.

/N /N
110 105 110 105
14 We need to reorganize old 25

/ heap to keep priority queue /
25 structure. 14
Swap 25 and 14.
/N /N
110 105 110 105
/ 25 25 goes to output file. 14
14 No input.
13
Therefore, 14 is the new root. /
/13(\ 110 105
110 105

CS351 HW2 Solutions - October 30, 2010
Solutions are mostly due to
Emre Nevayeshirazi

14 14 goes to output file. /13(K
/13(\ No input. 110 105
110 105 Therefore, old heap is
destroyed.
13 130 goes to output file as a 105
/ new segment.. /
110 105 110
No input.
Therefore,105 is the new root.
105 We need to reorganize old 110
/ heap to keep priority queue /
110 structure. 105
Swap 105 and 110.
110 110 goes to output file. 105

105 No input.

105 is the new root.

105 105 goes to output file.

No input.

Heap is destroyed.

Output Segment 1 : 90, 80, 68, 65, 49, 39, 35, 25, 14
Output Segment 2 : 130, 110, 105
2 -
No of Sorted Segments : 800 / 10 = 80
b =((800* 10%)/2400)
=333,333.3
Sort Time:2 * b * ebt

=2 ™333,333.3 * 0.84 msec

=560,000 msec =9.3 min.

CS351 HW2 Solutions - October 30, 2010
Solutions are mostly due to
Emre Nevayeshirazi

3 -

A-

No of Passses : [l0g,80] = 7

Pass 1 2 3 4 5 6 7

Segment Size 10 MB 20 MB 40 MB 80 MB 160 MB | 2x320MB 1x 640 MB
1x160 MB 1x160 MB

No of Segments | 80 40 20 10 5 3 2

Time Needed to Merge : (No of Passes) * 2 * b * ebt

b=((800* 10#)/2400)

=333,333.3

=7%*2%333,333.3 *0.84 msec => 65 min.

C-

Number of Seeek and Rotations : (No of Passes) * p* 2 * (nsg)

Total Time for Seek and Rotations : (No of Passes) * p*2*(nsg)*(r+s)

=7*2%*2*80* (16 +8.3)= 54,432 msec

= 54.43 sec.

CS351 HW2 Solutions - October 30, 2010
Solutions are mostly due to
Emre Nevayeshirazi

q-
A-

No of Passses : [log,80] = 4

Pass 1 2 3 4

Segment Size 10 MB 40 MB 160 MB 1x 640 MB
1x160 MB

No of Segments | 80 20 5 2

B -

Time Needed to Merge :
b=((800*10%)/2400) =333,333.3

(No of Passes) * 2 * b * ebt =4 * 2 * 333,333.3 * 0.84 = 2,239,999.776 msec =» 37.33 min.

C-
Number of Seeek and Rotations : (No of Passes)* p*2*(nsg)*(r+s)
=4*4*2*80*(16+8.3)=62,208 msec

=62.208 seconds =» 1 min.

5-—

If p = nsg then we are using 80 way merge.

In this case,

Total Time Needed for Merge : [10ggo80] * [p*2 *nsg * (s+r)+(2*b *ebt)]
=80 *2*80*(24.3) +2 *(333,333.3) *(0.84)

= 311,040 + 559,999.944 msecs

=871,039.944 msecs

= 14.51 minutes

CS351 HW2 Solutions - October 30, 2010
Solutions are mostly due to
Emre Nevayeshirazi

P= 80 means that we read one record from each sorted segment (i.e., read 80 records) and
write the record with the smallest key to the output file (assuming that we are sorting in
ascending order) and read the next record from the sorted segment corresponding to the
record written to the output file. Note that we have buffering provided by the operating

system, so we write a block when the buffer is full (after many logical writes —writing to the

buffer- there will be a physical write —writing a block to the output file-). For selecting the

record to be written to the output file the use of a min-heap looks reasonable. The memory
requirement is small: we need room to keep 80 records in main memory, so it is practically

doable. (See p. 111-112 in Salzberg’s book. The discussion in the book points out that p=

nsg is the best for all numbers less than 196.)

6 —

If our file is allready in desired order, then there will be only one output segment. We are using
replacement selection sort and we can overlap write and read operations. Since our file is in desired
order, there will be no input record that is less than output record. Therefore, new heap tree will
never be created. Therefore, we will have only one output segment. Its expected memory size is
800 MB.

7 —_—
First, we need to fill 10 MB of memory that is available to us.

Number of records that 10 MB can hold = ((10 * 10%) / 200) = 50,000 records
Total Number of Records = ((800 * 105)/ 200) = 4,000,000 records

For the first 50,000 records we will not have any output. After first 50,000 records we will start
outputing. During the output of this 50,000 records, new inputs will go to new heap that is started
with 50,001* record. For the first 50,000 record we will have 1 output segment. For the second
50,000 records we will have another output segment and so on. Therefore, 4,000,000/50000 = 80
number of sorted segments will occur. The memory size of each is exactly 10 MB.

